The integer cohomology of toric Weyl arrangements
نویسنده
چکیده
A toric arrangement is a finite set of hypersurfaces in a complex torus, every hypersurface being the kernel of a character. In the present paper we prove that if T W̃ is the toric arrangement defined by the cocharacters lattice of a Weyl group W̃ , then the integer cohomology of its complement is torsion free.
منابع مشابه
The Cohomology Groups of Real Toric Varieties Associated to Weyl Chambers of Type C and D
Given a root system, the Weyl chambers in the co-weight lattice give rise to a real toric variety, called the real toric variety associated to the Weyl chambers. We compute the integral cohomology groups of real toric varieties associated to the Weyl chambers of type Cn and Dn, completing the computation for all classical types.
متن کاملThe homotopy type of toric arrangements
A toric arrangement is a finite set of hypersurfaces in a complex torus, every hypersurface being the kernel of a character. In the present paper we build a CW-complex S homotopy equivalent to the arrangement complement RX , with a combinatorial description similar to that of the well-known Salvetti complex. If the toric arrangement is defined by a Weyl group, we also provide an algebraic descr...
متن کاملYoung Diagrams and Intersection Numbers for Toric Manifolds associated with Weyl Chambers
We study intersection numbers of invariant divisors in the toric manifold associated with the fan determined by the collection of Weyl chambers for each root system of classical type and of exceptional type G2. We give a combinatorial formula for intersection numbers of certain subvarieties which are naturally indexed by elements of the Weyl group. These numbers describe the ring structure of t...
متن کاملA Vanishing Result for Toric Varieties Associated with Root Systems
Consider a root system R and the corresponding toric variety VR whose fan is the Weyl fan and whose lattice of characters is given by the root lattice for R. We prove the vanishing of the higher cohomology groups for certain line bundles on VR by proving a purely combinatorial result for root systems. These results are related to a converse to Mazur’s Inequality for (simply-connected) split red...
متن کاملOrbifold Cohomology of Hypertoric Varieties
Hypertoric varieties are hyperkähler analogues of toric varieties, and are constructed as abelian hyperkähler quotients T C////T of a quaternionic affine space. Just as symplectic toric orbifolds are determined by labelled polytopes, orbifold hypertoric varieties are intimately related to the combinatorics of hyperplane arrangements. By developing hyperkähler analogues of symplectic techniques ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014